Dr n. med. Michał Chrobak, DDS, M.Sc.

Absolwent Akademii Medycznej we Wrocławiu. W 2015 r ukończył prestiżowe studia podyplomowe Master of Science in Oral Implantology na Wydziale Lekarskim Uniwersytetu W.Goethego we Frankfurcie nad Menem, uzyskując tytuł Master of Science in Oral Implantology.

Ekspert ds. Implantologii DIPLOMATE ( ICOI, DGOI, PSI). Akredytowany implantolog kilku międzynarodowych organizacji implantologicznych - Fellowship (DGOI, ICOI, PSI).

Zweryfikowany Implantolog istniejący w światowym wykazie wiodących placówek implantologicznych LEADING IMPLANT CENTERS - www.leadingimplancenters.com

W 2009 roku ukończył Curriculum Implantologiczne na Uniwersytecie J.W. Goethego we Frankfurcie nad Menem uzyskując tytuł Implantologa.

W 2007 obronił pracę doktorską z zakresu zastosowania laserów w stomatologii estetycznej.

Wykładowca z zakresu implantologii w kraju i zagranicą. Autor publikacji i wystąpień na konferencjach krajowych i międzynarodowych z zakresu stomatologii estetycznej i implantologii. Uczestnik wielu kursów, konferencji i szkoleń z zakresu endodoncji, chirurgii stomatologicznej i implantologii w kraju i za granicą.

Przewodniczący Rady Fundacji Rozwoju Stomatologii Praktycznej (www.kursyimplantologia.pl).

Jego biografia została opublikowana w prestiżowym leksykonie Who i Who w Polsce Hubnera

Abstract pracy dyplomowej:

Title

3-dimensional finite element analysis of stress surrounding dental implants utilized as orthodontic anchorage

Introduction

The number of adult patients starting interdisciplinary orthodontic-implantologic treatment has increased significantly in recent years. Such therapy is long running and that is why it should be planned in such way to shorten the treatment time to a minimum. Furthermore, in patients with multiple missing teeth, the essential problem is to obtain the most optimal anchorage. Hence the question arises, if dental implants can be utilized as orthodontic anchorage without risk of implants disintegration. Indeed orthodontic forces are much smaller then the chewing forces but they are constant and with the direction perpendicular to the long axis of the tooth and not parallel as chewing forces.

Aim

The aim of this study was to evaluate, using the finite element method (FEM), the stress and strain distribution in the mandibular alveolar bone surrounding the endoosseus implant and the implant under load of orthodontic forces, and to assess whether orthodontic forces are non-destructive, alongside comparing the distribution of stresses and strains in an isotropic and mimic model.

Materials and methods

The CBCT of a patient and micro CT of dental implants (Ankylos CX, diameter: 3,5 mm, length: 8 mm, 9,5 mm, 11 mm) was performed. CBCT was segmented with ‘in Vesalius’ software and the FE model of the mandible and implants was created, the implants were placed in the bone. The Ansys 15 software was used to generate measurements. For each kind of implant, two models were created: a mimic and solid and then for each, the simulation of both the integrated implant and the implant before osseointegration. The implants were loaded with orthodontic forces: constant and perpendicular to the long axis of the tooth with the mesio-distal direction and value of 0,5 N, 1 N, 1,5 N, and 2,5 N.

Results

Both maximum and mean stress values in the bone differ significantly on the mimic and solid model. On the mimic model the maximum strain level is fundamentally smaller then on the solid model. Bigger stress and strain levels are observed in the case of implants before osseointegration than on implants integrated with the bone. This trend is particularly apparent in the solid model. In the mimic model before osseointegration of the implant the stress decreases with the increase of the length of the implant. After osseointegration the implants length does not influence the increase or decrease of stress in the bone.

Conclusions

There are significant differences between results obtained on the mimic and soild model. The models in numerical analysis should as close as possible reflect the in vivo conditions, that is why it seems that the analysis of soild models is a simpification and the gained data should be interpreted carefully.